GENEVA: Benchmarking Generalizability for Event Argument Extraction with Hundreds of Event Types and Argument Roles

> Tanmay Parekh, I-Hung Hsu, Kuan-Hao Huang Kai-Wei Chang, Nanyun Peng

Outline

Introduction

- Dataset
- Methodology
- Experiments and Results
- Conclusion and Future Work

What is Event Extraction?

King Hammurabi led Babylon to victory

Existing EAE Benchmarking Datasets

New diverse EAE dataset GENEVA + four benchmarking test suites for testing generalizability

> Thorough generalizability evaluation of various existing EAE models

Introducing AutoDEGREE – generalizable and robust EAE model

> GENEVA: Pushing the Limit of Generalizability for Event Argument Extraction with 100+ Event Types

Outline

- Introduction
- Dataset
- Methodology
- Experiments and Results
- Conclusion and Future Work

FrameNet

- Large set of linguistically human-annotated data of frames following the Frame Semantic Theory
- Over 1200+ Semantic Frames (Potential Events)
 - Lexical Units (Event Triggers)
 - Frame elements (Event Arguments)
 - Frame relations (Argument relations)

Framenet is too fine-grained. All Frames are not Events Complex frame structure. Not all elements are arguments

FrameNet

Framenet is too fine-grained. All Frames are not Events Complex frame structure. Not all elements are arguments

GENEVA

Our created ontology

	ACE	RAMS	Full	GENEVA
# Event Types	33	139	179	115
# Abstract Event Types	2	3	5	5
# Argument Roles (AR)	22	65	362	220
Avg. # AR per Event	4.75	3.76	4.82	3.97
% Entity AR	100%	100%	65%	63%
% Non-Entity AR	0%	0%	35%	37%

Table 1: Full and GENEVA ontology Statistics. AR = Argument Role. An ontology covers an abstract type if it has 5+ events of that abstract type. Entity AR refers to argument roles that are entities.

Large coverage of event types and argument roles

Diverse set of abstract event types covered

Cover non-entity arguments which aren't covered before

Benchmarking Setup

Limited Training Data

Benchmarking Setup

Unseen Event Data

Cross-Type Transfer Training data from all events of an abstract type

Data Statistics

High coverage of event types and argument roles

Dataset	#Event Types	#Arg Types	Avg. Event Mentions	Avg. Arg Mentions
ACE	33	22	153.18	274.55
ERE	38	21	191.76	499
GENEVA	115	220	65.26	55.77

Challenging: Average mentions per event type and argument role is less Table 2: Statistics for different EAE datasets for benchmarking generalizability. The second and third columns are the unique number of event types and argument roles. The last two columns indicate the average number of mentions per event and argument role.

Data Statistics

Strang Strang Strang GENEVA ERE ACE Datasets

GENEVA is more diverse than all other existing datasets

GENEVA has more argument role mentions per sentence

Outline

- Introduction
- Dataset
- Methodology
- Experiments and Results
- Conclusion and Future Work

DEGREE Model - EAE

Passage: Earlier Monday, a 19-year-old <u>Palestinian</u> riding a bicycle detonated a 30-kilo (66-pound) <u>bomb</u> near a military <u>jeep</u> in the <u>Gaza Strip</u>, injuring three <u>soldiers</u>.

	Prompt for DEGREE(EAE)	
Event Type Description	The event is related to conflict and some violent physical act.	
★ Query Trigger	The event trigger word is detonated.	
CEAE Template	some attacker attacked some facility, someone, or some organization by some way in somewhere.	
	Output Text	
Palestinian att	tacked jeep and soldiers by bomb in Gaza Strip.	

DEGREE Model - EAE

DEGREE – Automating Event Description

Event Type Description

The event is related to conflict or some violent physical act.

F . T	
Event Type	
	The event type is conflict.
Description	
Description	

DEGREE – Automating Template

Role Mapping

Attacker -> Some attacker | Target -> Some facility, someone or some org ...

Argument Mapping Attacker -> some attacker | Target -> some target ...

DEGREE – Automating Template

Template Generation

Some attacker attacked some facility, someone or some organization by some way in somewhere

Palestinian attacked jeep and soldiers by bomb in Gaza Strip

Direct Argument

Mapper

The attacker is some attacker. The target is some target. The instrument is some instrument. The place is some place

The attacker is Palestinian. The target is jeep and soldiers. The instrument is bomb. The place is Gaza Strip.

Outline

- Introduction
- Dataset
- Methodology

• Experiments and Results

• Conclusion and Future Work

Experimental Setup

Results – Low Resource Benchmark

OneIE and Query & Extract achieve poor overall scores and not included here

DEGREE performs best across both metrics and in all data settings

TANL and DyGIE++ give good micro F1 for higher events but poor macro F1 indicating poor generalizability

Results – Few-shot Benchmark

AutoDEGREE model outperforms all other baseline models

Traditional classification methods show poor performance

Results – Unseen Data Setting

Model	ZS-1	ZS-5	ZS-10	CTT
BERT_QA	5.05	21.53	24.24	11.17
DEGREE	24.06	34.68	39.43	27.9

TANL and DyGIE++ show poor zero-shot performance and not included here AutoDEGREE model outperforms all other baseline models

Analysis – GENEVA v/s ACE

	LR-400		ZS-10	
	GENEVA	ACE	GENEVA	ACE
BERT_QA DEGREE	$\begin{array}{c} 33 \\ 49.9 \end{array}$	- 57.3*	$\begin{vmatrix} 24.2\\ 39.4 \end{vmatrix}$	$46.7^{*} \\ 53.3^{*}$

Both DEGREE and BERT_QA perform better on ACE and relatively poorly on GENEVA benchmarks

Analysis – GENEVA v/s ACE

	Entity	Non-entity	Δ
DEGREE	54.46	39.89	14.57
TANL	52.54	42.4	10.14
BERT_QA	36.71	24.86	11.85

Breakdown shows that non-entity arguments are more difficult to extract and shows the additional challenge introduced by GENEVA dataset

Outline

- Introduction
- Dataset
- Methodology
- Experiments and Results

Conclusion and Future Work

Conclusion

- Using similarity of SRL and EAE, we constructed a new vast EAE ontology spanning 115 event types and 220 argument roles
- Utilizing this ontology, we construct a new generalizability benchmarking dataset GENEVA comprising four test suites.
- We benchmark various existing EAE models on our benchmarking test suites and inspire further research on generative models for EAE.
- Analysis further shows how GENEVA poses new challenges for EAE models and we anticipate future generalizability benchmarking efforts.